Events login

Main Events Calendar

Warning Icon This event is in the past.
January 31, 2020 | 2:00 p.m. - 3:00 p.m.
Category: Seminar
Location: Physics & Astronomy Department - Liberal Arts and Sciences #312
Cost: Free
Audience: Academic Staff, Current Graduate Students, Faculty

Including momentum and stress in a systematic framework for describing the evolution of a heavy-ion collision

Matthew Luzum, University of São Paulo


The evolution of a relativistic heavy-ion collision is typically understood as a process that transmutes the initial geometry of the system into the final momentum distribution of observed hadrons, which can be described via a cumulant expansion of the initial distribution of energy density and is represented at leading order as the well-known eccentricity scaling of anisotropic flow.

We extend this framework to include the contribution from initial momentum-space properties, as encoded in other components of the energy-momentum tensor. We confirm the validity of the framework in state-of-the-art hydrodynamic simulations. With this new framework, it is possible to separate the effects of early-time dynamics from those of final-state evolution, even in the case when the distribution of energy does not fully determine subsequent evolution, as expected in small systems.

Specifically, we answer the question of when and how azimuthal correlations from the initial state survive to the final state. Additionally, this framework elucidates the generic features of the system evolution that are responsible for the impressive success of hydrodynamic simulations, but which may still hold even in cases when hydrodynamics is not applicable.

For more information about this event, please contact Gojko Vujanovic at 6147492893.