“Regulatory Roles of Plasmalogen-Derived Lipid Mediators in Adipose Tissue Metabolism”

Warning Icon This event is in the past.

When:
February 22, 2024
11 a.m. to noon
Where:
Scott Hall #2268
540 E. Canfield Ave
Detroit, MI 48201
Event category: Seminar
In-person

Co-Sponsored by the Center for Molecular Medicine & Genetics and Lipids@Wayne

Yun-Hee Lee, PhD, Professor, Department of Pharmacology, College of Pharmacy, Seoul National University

 “Regulatory Roles of Plasmalogen-Derived Lipid Mediators in Adipose Tissue Metabolism”

Abstract

Adipose tissue is a dynamic and metabolically active organ that plays a crucial role in energy homeostasis and endocrine function. Recent advancements in lipidomics techniques have enabled the study of the complex lipid composition of adipose tissue and its role in metabolic disorders such as obesity, diabetes, and cardiovascular disease. In addition, adipose tissue lipidomics has emerged as a powerful tool for understanding the molecular mechanisms underlying these disorders and identifying bioactive lipid mediators and potential therapeutic targets. Dysregulation of adipose tissue plasmalogen metabolism is associated with obesity-related metabolic diseases. We report that feeding mice a high-fat diet reduces adipose tissue lysoplasmalogen levels and increases transmembrane protein 86A (TMEM86A), a putative lysoplasmalogenase. Untargeted lipidomic analysis demonstrates that adipocyte-specific TMEM86A-knockout (AKO) increases lysoplasmalogen content in adipose tissue, including plasmenyl lysophosphatidylethanolamine 18:0 (LPE P-18:0). Surprisingly, TMEM86A AKO increases protein kinase A signalling pathways owing to inhibition of phosphodiesterase 3B and elevation of cyclic adenosine monophosphate. TMEM86A AKO upregulates mitochondrial oxidative metabolism, elevates energy expenditure, and protects mice from metabolic dysfunction induced by high-fat feeding. Importantly, the effects of TMEM86A AKO are largely reproduced in vitro and in vivo by LPE P-18:0 supplementation. LPE P-18:0 levels are significantly lower in adipose tissue of human patients with obesity, suggesting that TMEM86A inhibition or lysoplasmalogen supplementation might be therapeutic approaches for preventing or treating obesity-related metabolic diseases.

Contact

Suzanne Shaw
3135775323
sshaw@wayne.edu

Cost

Free
February 2024
SU M TU W TH F SA
28293031123
45678910
11121314151617
18192021222324
252627282912