Physics and Astronomy Colloquium - Dr. Eric Pop, Stanford University

Warning Icon This event is in the past.

Date: October 1, 2020
Time: 3:45 p.m. - 5:00 p.m.
Location: on Zoom
Category: Lecture

Title: Electronic, Thermal, and (Some) Unusual Applications of 2D Materials

Abstract: This talk will present recent highlights from our research on two-dimensional (2D) materials, including graphene, boron nitride (h-BN), and transition metal dichalcogenides (TMDs). Our results span from material growth and fundamental measurements, to simulations, devices, and system-oriented applications. We have grown monolayer 2D semiconductors over large areas, including MoS2 [1], WSe2, and MoSe2 [2]. We also uncovered that ZrSe2 and HfSe2 have native high-κ dielectrics ZrO2 and HfO2, which are of key technological relevance [3]. Improved electrical contacts [4] led to the realization of 10 nm monolayer MoS2 transistors with high current density, near ballistic limits [5]. We have also demonstrated new memory devices based on Mo-, Sb-, and Ge- tellurides [6,7]. These could all play a role in 3D heterogeneous integration of nanoelectronics, which presents significant advantages for energy-efficient computation [8]. I will also describe a few less conventional applications, where we used 2D materials as highly efficient thermal insulators [9] and as thermal transistors [10]. These could enable control of heat in “thermal circuits” analogous with electrical circuits. Combined, these studies reveal fundamental limits and some unusual applications of 2D materials, which take advantage of their unique properties. 

Refs: [1] K. Smithe et al., ACS Nano 11, 8456 (2017). [2] K. Smithe et al., ACS AMI 1, 572 (2018). [3] M. Mleczko et al., Science Adv. 3, e1700481 (2017). [4] C. English et al., Nano Lett. 16, 3824 (2016). [5] C. English et al., IEDM, Dec 2016. [6] I. Datye et al., Nano Lett. 20, 1461 (2020). [7] A. Khan et al, in prep. (2020). [8] M. Aly et al., Computer 48, 24 (2015). [9] S. Vaziri et al., Science Adv. 5, eaax1325 (2019). [10] A. Sood et al. Nature Comm. 9, 4510 (2018). 

 Bio: Eric Pop is a Professor of Electrical Engineering (EE) and Materials Science & Engineering (by courtesy) at Stanford, where he leads the SystemX Heterogeneous Integration focus area. He was previously on the faculty of UIUC (2007-13) and worked at Intel (2005-07). His research interests are at the intersection of electronics, nanomaterials, and energy. He received his PhD in EE from Stanford (2005) and three degrees from MIT (MEng and BS in EE, BS in Physics). His honors include the Presidential Early Career Award (PECASE), Young Investigator Awards from the Navy, Air Force, NSFand DARPA, and several best paper and best poster awards with his students. He is an Editor of the journal 2D Materials, has served as General Chair of the Device Research Conference, and on program committees of IEDM, VLSI, APS, and MRS. In his spare time he tries to avoid injuries while snowboarding and in a past life he was a DJ at KZSU 90.1 FM, from 2000-04. Additional information about the Pop Lab is available online at


Paul Karchin
(313) 577 5424


October 2020