Wayne State University

 
Add An Event

Physics & Astronomy

Warning Icon This event is in the past.
December 7, 2017 | 3:45 p.m. - 5:00 p.m.
Category: Seminar
Location: Physics & Astronomy Department - Liberal Arts and Sciences #245 | Map
666 W. Hancock
Detroit, MI 48201
Cost: Free
Audience: Academic Staff, Alumni, Community, Current Graduate Students, Current Undergraduate Students, Faculty

Using liquid crystals to command swimming bacteria

Oleg D. Lavrentovich

Liquid Crystal Institute, Department of Physics, and Chemical Physics Interdisciplinary Program, Kent State University

Self-propelled bacteria are marvels of nature. If we can control their dynamics, we could use it to power dynamic materials and microsystems of the future. Unfortunately, bacterial swimming is mostly random in isotropic liquids such as water and is difficult to control by factors other than transient gradients of nutrients. We propose to command the dynamics of bacteria by replacing water with water-based liquid crystals. The long-range orientational order of the liquid crystal can pre-patterned into various structures by a plasmonic photoalignment technique [1]. The experiments demonstrate that the liquid crystals command the dynamics of bacteria, namely, the trajectories of swimming, polarity of motion, and distribution of bacteria in space [2]. The study of bacteria-liquid crystal system might result in approaches to harness the energy of collective motion for micro-robotic, biomechanical, and sensing devices, as well as micro-mixing and transport of micro-cargo. The work is supported by NSF grants DMR-1507637 and DMS-1729509.

[1] C. Peng, Y. Guo, T. Turiv, M. Jiang, Q.-H. Wei, O.D. Lavrentovich, Patterning of Lyotropic Chromonic Liquid Crystals by Photoalignment with Photonic Metamasks, Advanced Materials 2017, 1606112 (2017).

[2] C. Peng, T. Turiv, Y. Guo, Q.-H. Wei, O.D. Lavrentovich, Command of active matter by topological defects and patterns, Science 354, 882 (2016).

For more information about this event, please contact Zhi-Feng Huang at (313) 577 2791 or huang@wayne.edu.