Events login

Physics & Astronomy

Warning Icon This event is in the past.
February 15, 2018 | 3:30 p.m. - 5:00 p.m.
Category: Seminar
Location: Physics & Astronomy Department - Liberal Arts and Sciences #245 | Map
666 W. Hancock
Detroit, MI 48201
Cost: Free
Audience: Academic Staff, Alumni, Community, Current Graduate Students, Current Undergraduate Students, Faculty

"Out of equilibrium dynamics: Lessons from Nuclear Collisions"
Dr. Mauricio Martinez Guerrero (North Carolina State University)

The current knowledge of the universe is highly constrained without understanding the formation of baryonic matter widely observed today. It is then required to know the precise details of the transition where a highly dense plasma composed by quarks, antiquarks, and gluons combine to form hadrons. Ultrarelativistic heavy ion experiments can recreate non-equilibrium extreme conditions of the early universe by colliding heavy nuclei moving nearly at the speed of light. One of the major scientific discoveries of this century is the observation of a tiny, short-lived quark-gluon plasma (QGP). This extreme state of matter behaves like a liquid with a very small viscosity. Recently, we have learned that the perfect fluidity property, observed first in nucleus-nucleus collisions, also extends to proton-nucleus and proton-proton collisions. The “nearly perfect liquid” behavior of the QGP has opened up a new avenue for studying transport properties of strongly interacting systems. Nonetheless, these experimental findings challenge the theorists to develop better models which include the non-equilibrium evolution of the expanding nuclear matter created in those collisions. In this talk, I will review the 'standard model picture' of heavy ion collisions and present some recent theoretical studies which attempt to explain the unreasonable phenomenological success of fluid dynamical models in far from local equilibrium situations. I shall pose several unanswered questions about the QGP which emerge from these new theoretical developments and discuss how in the next few years, future experimental programs at large baryon densities and energy regimes will herald a new era of discovery and unraveling of the secrets of QGP.


For more information about this event, please contact W.J. Llope at 3135779805 or