Physics and Astronomy Colloquium - Dr. Valerica Raicu, University of Wisconsin Milwaukee

Warning Icon This event is in the past.

Date: November 12, 2020
Time: 3:45 p.m. - 5:00 p.m.
Location: on Zoom
Category: Lecture

Title: Distance- and diffusion-based methods for probing macromolecular association in living cells

Abstract: Fluorescence-based methods for probing association of proteins or other biological macromolecules within living cells fall roughly within two groups. One family of methods, based on Förster Resonance Energy Transfer (FRET), probes molecular association by measuring relative distances between molecules within a complex (or oligomer) via transfer of energy from an optically excited to un-excited fluorescent tags attached to the molecules of interest. A second class of methods, generically known as Fluorescence Fluctuation Spectroscopy (FFS), probes fluctuations in fluorescence intensities from pixel to pixel in an image (i.e., in space) or from measurement to measurement (in time series) to determine whether the molecules that produced the fluctuations diffuse around as monomers, dimers, or higher order oligomers. In this talk, I will overview contributions of my research group to the development of such methods and their application to the study of oligomerization of membrane receptors in the presence and absence of their natural or artificial ligands. Our studies aim to provide (i) biophysicists and life scientists with tools for understanding life processes, such as cellular signaling, and (ii) pharmacologists with in-cell drug-screening assays for discovery and characterization of new drugs.

Bio: Valeric─â Raicu is a Professor in the Physics Department and affiliated faculty in the Biological Sciences Department at the University of Wisconsin-Milwaukee (UWM). Professor Raicu’s main research interests span the development of spectroscopic and micro-spectroscopic technology and applications to the study of protein-protein and cell-cell interactions. His focus over the past decade has been investigation of G-Protein coupled receptor oligomerization in living cells and the biological role it may play. He has authored or co-authored numerous peer-reviewed articles, book chapters, and books on various topics in physics, biophysics, and bioengineering, as well as several patents in the area of optical micro-spectroscopy. He also currently serves as the Director of the UWM Small Businesses Collaboratory and Biophysical Spectroscopy Laboratory.


Paul Karchin
(313) 577 5424




Academic staff, Current students, Faculty