Chemical Engineering for a Solar Economy

Warning Icon This event is in the past.

Date: April 6, 2022
Time: 11:30 a.m. - 12:30 p.m.
Location: Please RSVP to helen.durand@wayne.edu to receive the Zoom link
Category: Seminar

Abstract: Fossil resources have played an unprecedented role in human history.  The availability of fossil energy in high volumetric density has propelled human civilization at an unprecedented rate for more than two centuries.  However, in spite of recent surge in fossil resource availability, with the ever increasing rate of energy demand, it is certain that we will eventually need a sustainable source of energy.  The solar energy is one such source, it is plentiful, and its use can meet our daily needs for food, chemicals, heat, electricity and transportation for any foreseeable future. 

The challenge with the transition from a fossil resource based economy to a solar economy is that we have to learn to harness, transform and store solar energy at the time scale of our use pattern.   This has been a problem due to dilute intensity of solar irradiation and its intermittent availability.  Thus, the methods to collect and transform solar energy have to be both efficient and low-cost for wide spread use.  In this presentation, we will discuss these challenges and our interdisciplinary approach for finding potential solutions.  We will present sustainable solutions for transportation and production of fuels and chemicals using biomass.  We will make a case for local photons to meet local needs through photovoltaic aglectric farming to enable a ‘full earth’ scenario. Finally, we will briefly discuss our research on low-cost solution processed inorganic solar cells. 

Indeed, we are living in an exciting time as we continue to debate and prepare for the eventual transition from a fossil based economy to a sustainable economy based on solar energy.  The goal of this presentation is to share some of this excitement from my own experiences.

Biography: Rakesh Agrawal is the Winthrop E. Stone Distinguished Professor in the Davidson School of Chemical Engineering at Purdue University. Before joining Purdue in 2004, Agrawal had a fruitful and productive carrier at Air Products and Chemicals rising to its highest technical position of Air Products Fellow. He received a B.Tech. from the Indian Institute of Technology, Kanpur, an M.Ch.E. from the University of Delaware and an Sc.D. in chemical engineering from MIT.  His research includes novel processes for the fabrication of low-cost thin-film solar cells, energy systems analysis, shale gas processing, biomass to liquid fuel conversion, synthesis of efficient multicomponent separation processes using distillation, membranes and adsorption, and basic and applied research in gas separations and liquefaction. Agrawal has published 242 technical papers and has given over 270 invited lectures. He holds 128 U.S. and more than 500 foreign patents. These patents are used in over one hundred chemical plants with total capital expenditure in multibillion dollars. He has served on technology and engineering advisory boards of a number of companies.  Agrawal has received dozens of awards and honors, including Purdue’s Philip C. Wankat Graduate Teaching Award, Shreve Award for excellence in undergraduate teaching, and the Morrill Award for excellence in research, teaching and service. From the AIChE he has received Gerhold award in separations, the Institute Award for Excellence in Industrial Gases Technology, the Chemical Engineering Practice Award, Fuels and Petrochemicals Division Award, Alpha Chi Sigma Award for Chemical Engineering Research and the Founders Award for Outstanding Contributions to the Field of Chemical Engineering. He received Award in Separations Science and Technology from the ACS.  He delivered Peter V. Danckwerts Lecture at the 10th World Congress of Chemical Engineering.  He is a member of the U.S. National Academy of Engineering, a Fellow of the American Academy of Arts and Sciences, a Fellow of the US National Academy of Inventors and a Fellow of the Indian National Academy of Engineering. Agrawal received the National Medal of Technology and Innovation from President Obama in 2011.

April 2022
SU M TU W TH F SA
272829303112
3456789
10111213141516
17181920212223
24252627282930